

Electrolytic vs Carbonyl Iron Powders

K.Utpat, Dr. N.B. Dhokey

Dept. Of Metallurgy And Material Science, Govt. College Of Engineering , Pune (India) Email: nbdhokey@yahoo.co.in

Sponsored By

Industrial Metal Powders (I) Pvt. Ltd. Pune (India)

Motivation

 Vast application of Diamond cutting tools (DCTs) in stone cutting industries.

Dressing Operation

Segments of circular saw

Applications OFDCT

- Iron base DCTs occupies major part (nearly 50% by wt.)
- Imported and costly Carbonyl Iron traditionally being used in DCT.
- Carbonyl-iron (C-Fe) can be effectively replaced by Electrolytic
 Iron (E-Fe) due to its better sintered properties viz. Hardness,
 Sintered density ,Wear and Fracture Test etc.
- It is an opportunity to reduce material cost of DCT without affecting the properties.

Experimental Work

Experimental Process

- Hot-Press sintering of Electrolytic iron (E-Fe) and Carbonyl iron (C-Fe) powders.
- Manufacturing of DCT using E-Fe and C-Fe.

Properties Of The Powders and Their sources

Sr. No.	Powder	Particle size (FSSS/ micron)	ASTM Sieve Size (mesh)	Apparent density (g/cc)	Make
1	Electrolytic Iron (E-Fe)	2.4	2400	1.3	Industrial Metal Powders, Pune
2	Carbonyl Iron (C-Fe)	2.58	2400	2.6	Imported
3	Electrolytic Copper	4.5	2400	1.20	Local
4	Cobalt	1.45	4800	1.40	Imported
5	Nickel	105	140	4.10	Imported
6	Fused Tungsten Carbide (FTC)	37 - 44	-325 + 400	6.07	Local
7	Aluminum	91	140	1.18	Local
8	Magnesium	52	270	0.64	Local

2380 grade imported diamonds of 50/60 mesh are used.

SEM Powder Morphology (3000X)

Electrolytic Iron

Hot-Press Sinterability

Of

Electrolytic Iron Powder (E-Fe)

And

Carbonyl Iron Powder (C-Fe)

Process Parameters For

Hot-Press sintering of Iron Powder

Hot-press sintering carried out at M/s Supercut, Mumbai.

Sintered Properties Of Iron Powders

Mixing in double cone blender

Mixing time 2 Hrs.

Without mechanical grinding

(no steel balls used during mixing)

Hot-press sintered at 850 °C for 3 min.

Parameters	E-Fe (TR grade)	C-Fe
Hardness (HRB)	83	64
Density (g/cc)	7.33	7.53
% Porosity	6.74	4.20

With mechanical grinding

(Steel balls used during mixing with ball to Powder ratio (10:1) by wt.)

Parameters	E-Fe (TR grade)	C-Fe
Hardness (HRB)	85	65
Density (g/cc)	7.46	7.54
% Porosity	5.08	4.04

Fabrication Of Diamond Cutting Tool (DCT)

Using E-Fe and C-Fe

Fabrication of DCTs using Electrolytic Iron Powder (E-Fe)

	Matrix composition (wt. %)								
Tool	E-Fe	Cu	Со	FTC	Ni	Al	Mg	Diamonds	
A (DCT)	44.62	13.5	20	10	2	6	1	2.88	
B (Dummy)	47.5	13.5	20	10	2	6	1	0	

Fabrication of Diamond Cutting Tools (DCT) using Carbonyl Iron Powder (C-Fe)

	Matrix composition (wt. %)							
Tool	C-Fe	Cu	Со	FTC	Ni	Al	Mg	Diamonds
C (DCT)	44.62	13.5	20	10	2	6	1	2.88
D (Dummy)	47.5	13.5	20	10	2	6	1	0

Mfg. Of Diamond Cutting Tools By Hot-Press Sintering

Hot-press sintering carried out at M/s Supercut, Mumbai.

DCT made using Electrolytic iron powder

DCT using Carbonyl iron powder

Characterization of Diamond Cutting Tools

1. Hardness

 Hardness measured on B-scale (HRB) of Rockwell hardness tester with (1/16") steel ball indenter at major load of 100 kg.

(± 3HRB error)

2. Density

• Density measured by Archimedes principle by the following formula,

(0.03 g/cc error)

 $\rho = \frac{ma}{(ma - mw)} \ x \ \rho w$

Where,

- ρ = density of sample (g/cc)
- ρw = density of water (1g/cc)
- m_a = mass of sample in air (gm)

 m_w = mass of sample in water (gm)

3. Wear rate

• Wear test performed on pin on disc wear machine with following parameters

Parameter	
Sliding Distance (m)	3000
Sliding Speed(m/s)	2.34
Load (kg)	2
Pressure (MPa)	0.4
Counter surface Alumina Disc	Moh's Hardness 7

Properties Of Fabricated Dummy Tools (without addition of diamonds)

		850 °C		900 °C		
Tool	Hardness HRB	Density (g/cc)	Wear Rate (mm ³ /m)	Hardness HRB	Density (g/cc)	Wear Rate (mm ³ /m)
B (E-iron)	103	7.13	4.126 x 10 ⁻⁴	109	7.11	4.477 x 10 ⁻⁴
D (C-iron)	106	7.56	10.3 x 10 ⁻⁴	109	7.59	12.2 x 10 ⁻⁴

Properties Of Fabricated **Diamond** Cutting Tools (addition of diamonds)

850 °C				900 °C			
Tool	Hardness HRB	Density (g/cc)	Wear Rate (mm ³ /m)	Hardness HRB	Density (g/cc)	Wear Rate (mm ³ /m)	
A (E-iron)	103	6.88	0.29 x 10 ⁻⁴	102	7.04	3.551 x 10-4	
C (C-iron)	106	7.32	9.34 x 10 ⁻⁴	107	7.36	5.20 x 10 ⁻⁴	

Significance of wear loss

- Low wear loss means more life to the diamond cutting tools.
- High wear loss less life more life to the diamond cutting tools.
- User of the tool is interested to maximize the life of the tools.
- High wear loss to carbonyl powder is due to onion like structure.

C-Iron: Onion like structure

Difference between Friction & Wear

Modes OF WEAR

TYPES	CONTRIBUTION
ABRASIVE	50 %
ADHESIVE	15 %
EROSION	8 %
FRETTING	8 %
CHEMICAL	5 %

Conclusions

- Electrolytic iron exhibits higher hot-press hardness than carbonyl iron powder.
- > Diamond Cutting Tools containing Electrolytic iron exhibits higher wear resistance.
- Electrolytic iron powder can replace carbonyl iron powder without affecting end properties of sintered diamond cutting tools and with improved wear resistance.

!!! Thank you !!!

Question?

And

...Answers